
June 22, 2016 – Deadlocks and Devices

Deadlocks

 Resource allocation

 Detecting deadlocks

 Resolving deadlocks

Devices

 Hosts and controllers

 I/O

 Drivers

System Model

 Process

 Resources

 Requests

 Request

 Use

 Release

Deadlock Characterization

1. Mutual Exclusion – resources cannot be shared, a second request must be delayed

2. Hold and wait – a process must be holding a resource and waiting for another resource

3. No preemption – resources cannot be taken from a process once it has them

4. Circular waiting – for a set of process {p1…pn} then p1 must wait for p2 which must for p3 …

which must wait for Pn which must wait for P1

Resource Allocation Graphs

When request edge success = assignment edge (when is done remove it)

Problem: every process is waiting

Handling Deadlocks:

 Let be deadlocks -> let’s fix them

 We don’t care (not terrible way)

 Developers manage resources

 Not worth time

Prevent Deadlocks:

 Break one of the four characterization

 Mutual Exclusion

 Keep this one

 Hold and Wait (a little wasteful of resources)

 Require a process request and be allocated all of its resource out the same time

 If it gets one resource. It gets them all

 No Preemption

 If a process requests a resource and must wait it must give up all resource it holds

 Good for easily, saved resources

 Like a CPU

 Harder for more complex resources

 Like a mutex

 Circular Waiting

 Create a total order of all resources

 Require process to request resources in increasing order

 {R1…Rn} F:R -> N

 F(tape) = 1

 F(disk) = 2

 F (printers) = 12

 Protocol

 A process can initially request any resource but it ran only request resource with higher

F(R) value then last received after the first

Deadlock Avoidance

 If we have more information about the behavior of a process (like, which resources a process

will require)

 We can determine at runtime which allocations are safe and which are unsafe

 Safe state

 If there is a safe sequence of resource assignment to process, a process P, can wait and

receive the resource it needs from those available and those that will be freed by other

process

 The system is in a safe state, if there is a safe sequence but not all sequences are safe but

not all unsafe sequences lead to deadlocks

 12drivers / 3 process

 Bankers Algorithm

 New process declare max # of resources instances they may need

 When actually requested, system checks to see, if that request can be fulfilled, if not the

process must wait

 For n processes and m resources

Available – vector (m) of current, available resources

Max – matrix [n][m] – max demand

 Max[i][j] is the most instance

 P(i) may request of R(j)

 Allocation – matrix [n][m] – All[i][j] # of R(j) allocated to P1

 Need – matrix[n][m] – need[i][j] - # of R(j) that P1 needs

 Need(i) – row for P(i) from need

 Vector a < vector b

 If for all i Va[i] < Vb[i]

 (1,2,3) < (1,2,4)

 Safety Algorithm

 Is this system in a safe state?

 Initialize: work [m] – work = available

 Finish [n] – finish [i] = false for all i

 4. find an index: such that finish [i] = false

And need [i] <= work

If no such i, go to step 3

 2. Work = set work + allocation and finish [i] = true

Go to step 1

 3. If finish [i] = true for all, then the system is safe

 Example:

ALL MAX NEED

ABC ABC ABC

010 753 743

200 322 122

302 902 600

211 222 011

002 433 431

Available

ABC

332

0 = work [3,2,2] finish = [F,F,F,F,F]

 Choose P1

 Work [5,3,2] – finish = [F, T, F, F, F,]

1 = Choose P3

 Work [7,4,3,] – finish = [F, T, F, T, F]

2= P0

 Work [7,5,3] – finish = [T, T, F, T, F]

3 = P2

 Work [9,6,4] – finish = [T, T, T, T, F]

 P4

 Work [9,6,6] – finish = [T, T, T, T, T]

 Resource Request Allocation

 A) request is the request vector for Pi

 B) if request > max – error condition

 C) if request > A variable – P1 must wait

 D) otherwise make a copy of the tables such that

 Available = available – request(i)

 Allocation(i) = allocation(i) + request(i)

 Need = need(i) – request(i)

 If the resulting sate is safe (see safely), request i can be allocated and set the tables to

the copies

 Request(i) = (1,0,2)

 Available = (2,3,0), Allocation = (3,0,2) Need = (0,2,0)

Deadlock Detection

 Want an algorithm to examine the state of our system and an algorithm to help recover

 Bankers algorithm for deadlock detection

 Available – vector [m] of the resources available

 Allocation – matrix [n][m] current requests of each process

 A) let work be a vector of m and finish be a vector of n

 For all j if allocation(i) != 0 then finish [i] = false

 Otherwise finish [i] = true

 B) find an index I such that finish [i] = false

 And request(i) <= work

 C) set work = work + allocation(i), finish [i] = true, go to B

 D) if finish [i] == false

 For some I, the system is deadlocked

Example:

 Allocation Request

P0 2 4 1 0 0 2

P1 5 1 3 1 1 1

P2 3 3 1 0 1 6

Available

0 0 1

0: work (0,0,1), finish [F,F,F]

1: go to a)

2: system is deadlocked

Example:

Only available changes to 002

0: work = (0,0,2) finish [F,F,F]

1: P0 – work = [2,4,3]

2: P1 – work = [7,5,6] finish = [T,T,F]

3: P2 – work = [10,8,7] finish = [T,T,T]

 System is not deadlocked

