
June 22, 2016 – Deadlocks and Devices

Deadlocks

 Resource allocation

 Detecting deadlocks

 Resolving deadlocks

Devices

 Hosts and controllers

 I/O

 Drivers

System Model

 Process

 Resources

 Requests

 Request

 Use

 Release

Deadlock Characterization

1. Mutual Exclusion – resources cannot be shared, a second request must be delayed

2. Hold and wait – a process must be holding a resource and waiting for another resource

3. No preemption – resources cannot be taken from a process once it has them

4. Circular waiting – for a set of process {p1…pn} then p1 must wait for p2 which must for p3 …

which must wait for Pn which must wait for P1

Resource Allocation Graphs

When request edge success = assignment edge (when is done remove it)

Problem: every process is waiting

Handling Deadlocks:

 Let be deadlocks -> let’s fix them

 We don’t care (not terrible way)

 Developers manage resources

 Not worth time

Prevent Deadlocks:

 Break one of the four characterization

 Mutual Exclusion

 Keep this one

 Hold and Wait (a little wasteful of resources)

 Require a process request and be allocated all of its resource out the same time

 If it gets one resource. It gets them all

 No Preemption

 If a process requests a resource and must wait it must give up all resource it holds

 Good for easily, saved resources

 Like a CPU

 Harder for more complex resources

 Like a mutex

 Circular Waiting

 Create a total order of all resources

 Require process to request resources in increasing order

 {R1…Rn} F:R -> N

 F(tape) = 1

 F(disk) = 2

 F (printers) = 12

 Protocol

 A process can initially request any resource but it ran only request resource with higher

F(R) value then last received after the first

Deadlock Avoidance

 If we have more information about the behavior of a process (like, which resources a process

will require)

 We can determine at runtime which allocations are safe and which are unsafe

 Safe state

 If there is a safe sequence of resource assignment to process, a process P, can wait and

receive the resource it needs from those available and those that will be freed by other

process

 The system is in a safe state, if there is a safe sequence but not all sequences are safe but

not all unsafe sequences lead to deadlocks

 12drivers / 3 process

 Bankers Algorithm

 New process declare max # of resources instances they may need

 When actually requested, system checks to see, if that request can be fulfilled, if not the

process must wait

 For n processes and m resources

Available – vector (m) of current, available resources

Max – matrix [n][m] – max demand

 Max[i][j] is the most instance

 P(i) may request of R(j)

 Allocation – matrix [n][m] – All[i][j] # of R(j) allocated to P1

 Need – matrix[n][m] – need[i][j] - # of R(j) that P1 needs

 Need(i) – row for P(i) from need

 Vector a < vector b

 If for all i Va[i] < Vb[i]

 (1,2,3) < (1,2,4)

 Safety Algorithm

 Is this system in a safe state?

 Initialize: work [m] – work = available

 Finish [n] – finish [i] = false for all i

 4. find an index: such that finish [i] = false

And need [i] <= work

If no such i, go to step 3

 2. Work = set work + allocation and finish [i] = true

Go to step 1

 3. If finish [i] = true for all, then the system is safe

 Example:

ALL MAX NEED

ABC ABC ABC

010 753 743

200 322 122

302 902 600

211 222 011

002 433 431

Available

ABC

332

0 = work [3,2,2] finish = [F,F,F,F,F]

 Choose P1

 Work [5,3,2] – finish = [F, T, F, F, F,]

1 = Choose P3

 Work [7,4,3,] – finish = [F, T, F, T, F]

2= P0

 Work [7,5,3] – finish = [T, T, F, T, F]

3 = P2

 Work [9,6,4] – finish = [T, T, T, T, F]

 P4

 Work [9,6,6] – finish = [T, T, T, T, T]

 Resource Request Allocation

 A) request is the request vector for Pi

 B) if request > max – error condition

 C) if request > A variable – P1 must wait

 D) otherwise make a copy of the tables such that

 Available = available – request(i)

 Allocation(i) = allocation(i) + request(i)

 Need = need(i) – request(i)

 If the resulting sate is safe (see safely), request i can be allocated and set the tables to

the copies

 Request(i) = (1,0,2)

 Available = (2,3,0), Allocation = (3,0,2) Need = (0,2,0)

Deadlock Detection

 Want an algorithm to examine the state of our system and an algorithm to help recover

 Bankers algorithm for deadlock detection

 Available – vector [m] of the resources available

 Allocation – matrix [n][m] current requests of each process

 A) let work be a vector of m and finish be a vector of n

 For all j if allocation(i) != 0 then finish [i] = false

 Otherwise finish [i] = true

 B) find an index I such that finish [i] = false

 And request(i) <= work

 C) set work = work + allocation(i), finish [i] = true, go to B

 D) if finish [i] == false

 For some I, the system is deadlocked

Example:

 Allocation Request

P0 2 4 1 0 0 2

P1 5 1 3 1 1 1

P2 3 3 1 0 1 6

Available

0 0 1

0: work (0,0,1), finish [F,F,F]

1: go to a)

2: system is deadlocked

Example:

Only available changes to 002

0: work = (0,0,2) finish [F,F,F]

1: P0 – work = [2,4,3]

2: P1 – work = [7,5,6] finish = [T,T,F]

3: P2 – work = [10,8,7] finish = [T,T,T]

 System is not deadlocked

