
CPSC203 – Introduction to Problem
Solving and Using Application Software

Fall 2009

Tutorial 25, Mehrdad Nurolahzade

Introduction

• Jython Basics Review Exercise

• Using Loops

• Using Conditions

Problem Solving Fall 2009, Week 2, Lab 1 2

Circle Area and Circumference (1)

• Write a function named circle() that asks the
user to enter the radius of a circle, then
computes and prints out the area and
circumferences of that circle.

Problem Solving Fall 2009, Week 2, Lab 1 3

Circle Area and Circumference (2)

Problem Solving Fall 2009, Week 2, Lab 1 4

Cylinder Volume and Area (1)

• Write a function named cylinder() that asks
the user to enter the radius and height of a
cylinder, then computes and prints out the
volume and area of that cylinder.

Problem Solving Fall 2009, Week 2, Lab 1 5

Cylinder Volume and Area (2)

Problem Solving Fall 2009, Week 2, Lab 1 6

if Statement

• The if statement selects actions to perform.

• General syntax:
if if-condition:

if-body

• Example:
radius=float(raw_input(„Enter circle radius‟))

if radius<0:

print “Circle radius has to be positive!”

Problem Solving Fall 2009, Week 2, Lab 1 7

Comparison Operators

• Different operators can
be used in the condition
of an if statement:

– == (equal)

– != (not equal)

– < (less than)

– <= (less than or equal)

– > (greater than)

– >= (greater than or
equal)

if instructor==„Jalal‟:

print „You are in L03 or

L04‟

if instructor!=„Jalal‟:

print „You are in L01 or

L02‟

if age>13:

if age<20:

print „You are a teen‟

Problem Solving Fall 2009, Week 2, Lab 1 8

if-else Statement

• An if statement can have an else part.

• General syntax of an if-else statement:
if if-condition:

if-body

else:

else-body

• Example:
if sex==„Male‟:

print „Good morning Mr. ‟+name

else:

print „Good morning Mrs. ‟+name

Problem Solving Fall 2009, Week 2, Lab 1 9

Nested if-else Statements

• The if statement may
contain other if statements.

if grade>=90:

letter_grade=„A‟

else:

if grade>=80:

letter_grade=„B‟

else:

if grade>=70:

letter_grade=„C‟

else:

if grade>=60:

letter_grade=„D‟

else:

if grade>=50:

letter_grade=„E‟

else:

letter_grade=„F‟

if grade>=90:

letter_grade=„A‟

elif grade>=80:

letter_grade=„B‟

elif grade>=70:

letter-grade=„C‟

elif grade>=60:

letter_grade=„D‟

elif grade>=50:

letter_grade=„E‟

else:

letter_grade=„F‟

Problem Solving Fall 2009, Week 2, Lab 1 10

Logic Operators

• More complex logical conditions can be built
using and, or, not operators.

if day==„Monday‟ and hour>18:

print „Pizza‟

elif day==„Tuesday‟ or day==„Thursday‟:

print „Wings‟

elif hour>19:

print „Hamburger‟

else:

print „Pasta‟

Problem Solving Fall 2009, Week 2, Lab 1 11

Logic Exercise (1)

• Write a function even_or_odd() that asks user
to enter an integer value, then prints out
EVEN or ODD if the given value is even or odd
respectively.

• Example runs:
Give me an integer: 3

ODD

Give me an integer: 6

EVEN

Problem Solving Fall 2009, Week 2, Lab 1 12

Logic Exercise (2)

Problem Solving Fall 2009, Week 2, Lab 1 13

Logic Exercise (3)

• Write a function named salary_tax() that asks user to
enter his/her own monthly salary and computes and
prints out the salary tax. If salary is below $3,000 the
tax is zero. If salary is between $3,000 and $4,000
the tax is 5%. If salary is between $4,000 and $5,000
the tax is 10%. If salary is above $5,000 the tax is
15%.

• Example run:
Enter your monthly salary: 4200

You are monthly tax is: $420.0

Problem Solving Fall 2009, Week 2, Lab 1 14

Lists

• A list is an ordered set of indexed elements.
names=[„John‟, „Mike‟, ‟Rose‟, ‟James‟, ‟Tina‟]

numbers=[3, 5, 1, 6, 2, 5]

• Elements are numbered left to right.

• The index of the first element is 0.

• The index of elements is used to reference
them:
names[1] that is ‘Mike’
numbers[3] that is 6
numbers[0] that is 3

Problem Solving Fall 2009, Week 2, Lab 1 15

List Related Functions (1)

Author: Mehrdad Nurolahzade

Date: 30 Oct 2009

Description: CPSC 203, Fall 2009, Problem Solving, Week 2, Lab 1, Review Exercise

Function list_example() demonstrates some useful list related functions

def list_example():

list1=['a', 'g', 'b', 'a', 'd', 'b']

list2=['d', 'a', 'c']

len(list) returns the number of elements in list

print "Length of list1 is", len(list1)

list.index(element) returns the index of the first occurrence of element in list

print "Index of 'b' in list1 is", list1.index('b')

list.append(element) adds element to the end of list

list1.append('c')

list.insert(i, element) adds element to list at position i

list2.insert(0, 'b')

creates a new list by concatenating list1 and list2

list3=list1+list2

list1.extend(list2) appends list2 to list1

list1.extend(list2)

Problem Solving Fall 2009, Week 2, Lab 1 16

List Related Functions (2)

list=[e]*n initializes list to n elements of value e

list4=[0]*5

list.remove(element) deletes the first occurrence of element in list

list1.remove('g')

list.pop() deletes and returns the last element in list

last=list1.pop()

list.sort() sorts list in ascending order

list1.sort()

list.reverse() reverses list

list1.reverse()

min(list) returns the minimum element in list

minimum=min(list1)

max(list) returns the maximum element in list

maximum=max(list1)

element in list returns true of element is in list, false otherwise

if 'a' in list1:

print "a is in list1"

Problem Solving Fall 2009, Week 2, Lab 1 17

Loops

• Loops are programming structures that allow
us to repeat some statements as many times
as required.

• For loops are suitable when you need to
repeat something for a known number of
times.

• While loops are used when we need to repeat
something until a certain condition is met.

Problem Solving Fall 2009, Week 2, Lab 1 18

for Loop (1)

Problem Solving Fall 2009, Week 2, Lab 1 19

for Loop (2)

Problem Solving Fall 2009, Week 2, Lab 1 20

range() Function (1)

Problem Solving Fall 2009, Week 2, Lab 1 21

range() Function (2)

Problem Solving Fall 2009, Week 2, Lab 1 22

range() Function (3)

Problem Solving Fall 2009, Week 2, Lab 1 23

range() Function (4)

Problem Solving Fall 2009, Week 2, Lab 1 24

while Loop (1)

Problem Solving Fall 2009, Week 2, Lab 1 25

while Loop (2)

Problem Solving Fall 2009, Week 2, Lab 1 26

Nested Loops

Problem Solving Fall 2009, Week 2, Lab 1 27

Loop Exercise (1)

• Write a function named sum() that asks user
to enter a number N and then calculates and
prints out the sum of values from 1 to N.

• Example run:
Give me a value for N: 5

Sum of values 1 to N is 15

Problem Solving Fall 2009, Week 2, Lab 1 28

Loop Exercise (2)

• Write a function named list_sum() that
defines two same size lists named list1 and
list2 with values [1, 3, 2, 3, 4] and [0, 1, 2, 0, 3]
respectively. The function should create and
print out a third list named list3 whose
elements are the sum of same position
elements in list1 and list2.

• Example run:
list3= [1, 4, 4, 3, 7]

Problem Solving Fall 2009, Week 2, Lab 1 29

