CPSC 203

Problem Solving

Week 2 Labi

Loops and Conditions

Dina A. Said
dasaid@ucalgary.ca

Review

- Define a function def functionName():
- Define a variable

$$
\begin{aligned}
& x=10 \\
& \text { myName="Dina" }
\end{aligned}
$$

- Display a variable print x
- Display a constant print "Hello"

Review

- Display a constant and a variable print "My name is :", myName
- To execute a function, type in the black box functionName()

Review

- Make a function called Square that:

1. Sets the length of the square to be 6
2. Calculates the Area of the square (length*length)
3. Calculates the perimeter of the square ($4 *$ length)
4. Displays a message

- For a Square with length, area=, Perimeter=....

Solution

def Square():
length=6
area=length*length
Perimeter=4*length
print "For Square with length", length ,"Area=", area,
"Perimeter=", Perimeter

- What if I want the user to enter the length of the square? def Square(length):
area=length*length
Perimeter=4*length
Now, you can call your function with multiple lengths such as: Square(7), Square(8.5), etc...
This is called Parameter Passing

Note: For passing a string, you should use quotes e.g. def printName(myName):
print myName.
This function is called using: printName("Dina")

Exercise

- Make a function called myCircle that:

1. Define r as 10.5
2. Define pi as 3.14
3. Calculate the area of the circle (A) as $\mathrm{pi}^{*} \mathrm{r}^{*} * \mathrm{r}$
4. Calculate the perimeter of the circle (P) as $2 * \mathrm{pi}{ }^{*} \mathrm{r}$
5. Print the following message
"For a circle with radius ..., area $=\ldots$ and perimeter $=\ldots$. "
You should replaced the dots before with the radius, calculated area, and calculated perimeter
6. Use parameter passing concept to enable the user to pass the values of r and $p i$

If-else condition

statements2
else:-
statements3
IMP:

- For equal test, you must use " $==$ "e.g. if $x==y$

Example

- Make a function that compares two numbers x, y and prints "Equal" if $x=y$, "larger" if $x>y$, and "smaller" if $x<y$.
- Try testing using compare(6,7), compare $(7,9)$, compare (0,0)
def compare(x, y):
if $x==y$:
print "Equal"
elif $\mathrm{x}>\mathrm{y}$:
print "Larger"
else:
print "Smaller"

Exercise

- Modify your square function to check first if the length is greater than 0 . In case that, it is less than or equal 0 , your function should print an error message and it shouldn't calculate the area or the perimeter.

Answer

def square(length):
if length $<=0$:
print "Error, length should be greater than 0 " else:
area=length*length
perimeter=4*length
print "For a Square with length ", length, "Area=", area, "Perimeter=", perimeter

- Now, modify myCircle() function to check for the radius and pi values and ensure that they are greater than 0 .

LOOPS

- If I have an array ($10,20,30,40,50$)
- How to sum these numbers?

```
def myLoop():
    Sum = 0
    for x in [10,20,30,40,50]:
        Sum = Sum + x
    print Sum
```


Loops

for target in object \odot

statements

IMP:

Every statement indented after the loop is executed in every iteration of the loop

Example

- Modify the previous program to print the sum of each iteration in the loop

$$
\begin{aligned}
& \text { def myLoop(): } \\
& \qquad \begin{array}{l}
\text { Sum }=0 \\
\text { for } x \text { in }[10,20,30,40,50]: \\
\text { Sum }=\text { Sum }+x \\
\text { print "Current } x: ", x \\
\text { print "Current Sum:", Sum }
\end{array} \\
& \text { print "Finished" }
\end{aligned}
$$

While Loop

while condition-is-true:

 statementsExample:
def function whileLOOP():

$$
x=5
$$

while $\mathrm{x}>0$:

$$
\begin{aligned}
& \operatorname{print} x^{*} x \\
& x=x-1
\end{aligned}
$$

$$
\begin{array}{ll}
x=5 & \rightarrow 25 \\
x=4 & \rightarrow 16 \\
x=3 & \rightarrow 9 \\
x=2 & \rightarrow 4 \\
x=1 & \rightarrow 1 \\
x=0 & \text { STOP }
\end{array}
$$

Try removing $\mathrm{x}=\mathrm{x}-1$

Notes:

- $\mathrm{x}=\mathrm{x}+1 \rightarrow \mathrm{x}+=1$
- $\mathrm{x}=\mathrm{x}-1 \rightarrow \mathrm{x}-=1$
- $\mathrm{x}=\mathrm{x} * 2 \rightarrow \mathrm{x}^{*}=2$
- $x=x / 10 \rightarrow x / 10$

